729 research outputs found

    LIINUS/SERPIL: a design study for interferometric imaging spectroscopy at the LBT

    Get PDF
    LIINUS/SERPIL is a design study to augment LBTs interferometric beam combiner camera LINC-NIRVANA with imaging spectroscopy. The FWHM of the interferometric main beam at 1.5 micron will be about 10 mas, offering unique imaging and spectroscopic capabilities well beyond the angular resolution of current 8-10m telescopes. At 10 mas angular scale, e.g., one resolution element at the distance of the Galactic Center corresponds to the average diameter of the Pluto orbit (79 AU), hence the size of the solar system. Taking advantage of the LBT interferometric beam with an equivalent maximum diameter of 23 m, LIINUS/SERPIL is an ideal precursor instrument for (imaging) spectrographs at extremely large full aperture telescopes. LIINUS/SERPIL will be built upon the LINC-NIRVANA hardware and LIINUS/SERPIL could potentially be developed on a rather short timescale. The study investigates several concepts for the optical as well as for the mechanical design. We present the scientific promises of such an instrument together with the current status of the design study.Comment: 12 pages, SPIE conference proceeding, Orlando, 200

    Impact of copper and iron binding properties on the anticancer activity of 8-hydroxyquinoline derived Mannich bases.

    Get PDF
    The anticancer activity of 8-hydroxyquinolines relies on complex formation with redox active copper and iron ions. Here we employ UV-visible spectrophotometry and EPR spectroscopy to compare proton dissociation and complex formation processes of the reference compound 8-hydroxyquinoline (Q-1) and three related Mannich bases to reveal possible correlations with biological activity. The studied derivatives harbor a CH2-N moiety at position 7 linked to morpholine (Q-2), piperidine (Q-3), and chlorine and fluorobenzylamino (Q-4) substituents. Solid phase structures of Q-3, Q-4·HCl·H2O, [(Cu(HQ-2)2)2]·(CH3OH)2·Cl4·(H2O)2, [Cu(Q-3)2]·Cl2 and [Cu(HQ-4)2(CH3OH)]·ZnCl4·CH3OH were characterized by single-crystal X-ray diffraction analysis. In addition, the redox properties of the copper and iron complexes were studied by cyclic voltammetry, and the direct reaction with physiologically relevant reductants (glutathione and ascorbic acid) was monitored. In vitro cytotoxicity studies conducted with the human uterine sarcoma MES-SA/Dx5 cell line reveal the significant cytotoxicity of Q-2, Q-3, and Q-4 in the sub- to low micromolar range (IC50 values 0.2-3.3 μM). Correlation analysis of the anticancer activity and the metal binding properties of the compound series indicates that, at physiological pH, weaker copper(ii) and iron(iii) binding results in elevated toxicity (e.g.Q4: pCu = 13.0, pFe = 6.8, IC50 = 0.2 μM vs.Q1: pCu = 15.1, pFe = 13.0 IC50 = 2.5 μM). Although the studied 8-hydroxyquinolines preferentially bind copper(ii) over iron(iii), the cyclic voltammetry data revealed that the more cytotoxic ligands preferentially stabilize the lower oxidation state of the metal ions. A linear relationship between the pKa (OH) and IC50 values of the studied 8-hydroxyquinolines was found. In summary, we identify Q-4 as a potent and selective anticancer candidate with significant toxicity in drug resistant cells

    MASP-1 of the complement system enhances clot formation in a microvascular whole blood flow model.

    Get PDF
    The complement and coagulation systems closely interact with each other. These interactions are believed to contribute to the proinflammatory and prothrombotic environment involved in the development of thrombotic complications in many diseases. Complement MASP-1 (mannan-binding lectin-associated serine protease-1) activates coagulation factors and promotes clot formation. However, this was mainly shown in purified or plasma-based static systems. Here we describe the role of MASP-1 and complement activation in fibrin clot formation in a microvascular, whole blood flow model. This microfluidic system simulates blood flow through microvessels at physiological flow and shear rates and represents the closest model system to human physiology so far. It features parallel microchannels cultured with endothelial cells in a transparent microfluidic chip allowing real-time evaluation of clot formation by confocal microscopy. To test their effects on clot formation, we added the following activators or inhibitors (individually or in combination) to whole blood and performed perfusion experiments: rMASP-1cf (recombinant active form of MASP-1), complement activator zymosan, selective MASP-1 inhibitor SGMI-1 (based on the Schistocerca gregaria protease inhibitor scaffold), classical pathway inhibitor rSALO (recombinant salivary anti-complement from Lutzomyia longipalpis). Addition of rMASP-1cf resulted in accelerated fibrin clot formation while addition of SGMI-1 delayed it. Complement activation by zymosan led to increased clot formation and this effect was partially reversed by addition of rSALO and almost abolished in combination with SGMI-1. We show for the first time a strong influence of MASP-1, complement activation and pathway-specific inhibition on coagulation in a microvascular flow system that is closest to human physiology, further underpinning the in vivo relevance of coagulation and complement interactions

    Neural mechanisms for voice recognition

    Get PDF
    We investigated neural mechanisms that support voice recognition in a training paradigm with fMRI. The same listeners were trained on different weeks to categorize the mid-regions of voice-morph continua as an individual's voice. Stimuli implicitly defined a voice-acoustics space, and training explicitly defined a voice-identity space. The predefined centre of the voice category was shifted from the acoustic centre each week in opposite directions, so the same stimuli had different training histories on different tests. Cortical sensitivity to voice similarity appeared over different time-scales and at different representational stages. First, there were short-term adaptation effects: Increasing acoustic similarity to the directly preceding stimulus led to haemodynamic response reduction in the middle/posterior STS and in right ventrolateral prefrontal regions. Second, there were longer-term effects: Response reduction was found in the orbital/insular cortex for stimuli that were most versus least similar to the acoustic mean of all preceding stimuli, and, in the anterior temporal pole, the deep posterior STS and the amygdala, for stimuli that were most versus least similar to the trained voice-identity category mean. These findings are interpreted as effects of neural sharpening of long-term stored typical acoustic and category-internal values. The analyses also reveal anatomically separable voice representations: one in a voice-acoustics space and one in a voice-identity space. Voice-identity representations flexibly followed the trained identity shift, and listeners with a greater identity effect were more accurate at recognizing familiar voices. Voice recognition is thus supported by neural voice spaces that are organized around flexible ‘mean voice’ representations

    Integrated Process of Arabinose Biopurification and Xylitol Fermentation Based on the Diverse Action of Candida boidinii

    Get PDF
    Hemicellulosic hydrolysates of agro-residues are promising raw materials for xylitol and arabinose production through biotechnological methods. Two-step acidic fractionation of corn fibre was developed to produce a glucose- and arabinose-rich hydrolysate and a xylose-rich hydrolysate. An integrated process of arabinose biopurification on the glucose- and arabinose-rich hydrolysate and xylitol fermentation on the xylose-rich hydrolysate using Candida boidinii NCAIM Y.01308 was introduced, in which cell mass produced in arabinose biopurification was used as inoculum in the xylitol fermentation. Aerobic biopurification resulted in an arabinose solution containing 9.2 g L–1 of arabinose with a purity of 90 %, based on total sugars. Xylitol fermentation under microaerobic conditions resulted in a xylitol yield of 53 % of theoretical and a xylitol concentration of 10.4 g L–1 in three days. Hence, an integrated biorefinery process of hemicellulosic hydrolysates was developed based on the diverse action of C. boidinii to purify arabinose and produce xylitol
    corecore